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Abstract

Super pressure balloons (SPB), which float on constant density (isopycnic) surfaces,
provide a unique way of measuring the properties of atmospheric gravity waves (GW)
as a function of wave intrinsic frequency. Here we devise a quasi-analytic method of
investigating the SPB response to GW motions. It is shown that the results agree well
with more rigorous numerical simulations of balloon motions and provide a better un-
derstanding of the response of SPB to GW, especially at high frequencies. The method-
ology is applied to ascertain the accuracy of GW studies using 12m diameter SPB
deployed in the 2010 Concordiasi campaign in the Antarctic. In comparison with the
situation in earlier campaigns, the vertical displacements of the SPB were measured
directly using GPS. It is shown using a large number of Monte-Carlo type simulations
with realistic instrumental noise that important wave parameters, such as momentum
flux, phase speed and wavelengths, can be retrieved with good accuracy from SPB
observations for intrinsic wave periods greater than about 10 min. The noise floor for
momentum flux is estimated to be about 10~* mPa.

1 Introduction

Superpressure balloons (SPB) have been used as semi-Lagrangian tracers in both
the troposphere and lower stratosphere since the early 1960s (The TWERLE Team,
1977). The balloons use closed spherical envelopes filled with a fixed amount of gas.
After launch, balloons ascend until they reach a float level where atmospheric density
matches the balloon density. On this isopycnic or equilibrium density surface (EDS)
a balloon is free to float horizontally with the motion of the wind.

Tracking the horizontal position of SPB using Global Positioning Satellite (GPS) tech-
niques means that SPB are well suited to study horizontal motions in the atmosphere.
Measurement of vertical air motions is, however, more difficult because of the small
vertical displacements that SPB generally undergo. A balloon displaced from its EDS
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experiences buoyancy forces that act to restore it, so it undergoes natural buoyancy
oscillations (NBO) about its EDS. Furthermore, the EDS itself will oscillate in the pres-
ence of gravity (buoyancy) waves (GW). By analysing the governing equation of motion
through numerical integration Massman (1978) explored the nature of both these fac-
tors, including the amplitude and phase response of an SPB to GW-induced sinusoidal
variations of the EDS. Nastrom (1980) extended this work by considering the simulta-
neous wave-induced variations of density and vertical wind. He developed an analytical
relationship between the amplitude and phase of a SPB in the presence of a sinusoidal
gravity wave. Massman (1981) demonstrated how SPB can be used to study gravity
wave activity in the Southern Hemisphere upper troposphere and lower stratosphere.
The advantage of using SPB to study gravity waves is that, because the balloons drift
with the background wind, they measure the intrinsic frequency (frequency relative to
a moving reference frame). It is the intrinsic frequency that appears naturally in the
Navier—Stokes equations that determine wave properties, so SPB have an advantage
over either ground- or space-based sensors that measure frequency in a ground-based
frame (Alexander et al., 2010).

The French Space Agency, CNES, developed and applied 8.5m and 10 m diameter
SPB and, more recently, developed 12 m diameter balloons that can carry payloads of
up to 40 kg. These balloons are significantly larger than those used in previous studies
and have long flight times of the order of months. A mixture of 8 and 10 m diameter
SPB were used to study motions and transport in the Antarctic stratosphere during
the Stratéole/Vorcore campaign in 2005 (Hertzog et al., 2007). The long duration of
SPB flights during Vorcore proved invaluable in studies of atmospheric gravity waves
and the geographical variation of wave sources (Vincent et al., 2007; Boccara et al.,
2008; Hertzog et al., 2008; Walterscheid et al., 2012). In the subsequent Concordiasi
campaign in 2010, held during the Antarctic late winter and spring, 12 m diameter SPB
were used exclusively (Rabier et al., 2010).

A limitation of the Vorcore observations of gravity waves by SPB was the effective
15min sampling interval imposed by the data transmission rate. The corresponding
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Nyquist period of about 30 min was considerably longer than the approximately 5min
short period cut-off to the gravity wave spectrum due to the Brunt-Vaiséla frequency
in the lower stratosphere. In subsequent SPB campaigns this limitation was overcome
by the implementation of a new communications system which allows a time resolution
of about 30s. Improved time resolution is particularly important for SPB studies in the
tropics where convection is predicted to generate waves over a wide range of scales
and periods, but with wavelengths between 5 and 50 km and periods between 10 and
60 min being especially prominent (Piani et al., 2000; Beres, 2004; Lane and Moncrieff,
2008).

This paper consists of two parts. In the first part we investigate the response of SPB
to gravity wave motions by extending the analysis of Nastrom (1980) of the balloon
equation of motion. We introduce a quasi-analytic method for analysing the SPB re-
sponse to an atmospheric wave. When an SPB responds to a gravity-wave induced
displacement of the EDS the equation of motion is such that there is a phase shift be-
tween the balloon and the EDS displacement. This phase shift is a factor in the retrieval
of important GW parameters, including the intrinsic phase speed i.e. the speed relative
to the background wind. Amplitudes and phases derived from the simplified technique
are compared with the numerical calculations of the equation of motion of the SPB
and it is shown that they agree well. There is a specific emphasis on the response of
the newer 12m SPB, although the results are quite applicable to the smaller diameter
balloons. In the second part of the paper we test how well the improved instrumenta-
tion on the 12m SPB is able to detect GW motions and retrieve wave parameters. For
this aspect we carried out a large number of statistical realizations that covered the full
spectrum of GW frequencies. The computational efficiency of the analytic technique
means that it is very suitable for this analysis.
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2 Theory

Following Nastrom (1980), the governing equation of motion in the vertical direction for
a balloon floating in the atmosphere is

0°¢; 1 % \|% _,,
(Mg + nM,) P2 -9 (Mg - M,) - 5Pa C4AB Bt w Bt
ow'
M, M) — 1
+ (Mg +nM,) 7 1)

where the symbols are defined in Table 1.

Physically, the terms on the right hand side of Eq. (1) can be attributed to the three
non-negligible forces acting on the balloon. The first term is the buoyancy force, which
acts whenever the balloon is displaced vertically to restore it to its EDS. The second
term is the drag force, which acts to resist the motion of the balloon. The third term
comes from a dynamic force supplied to the balloon by the surrounding atmosphere
when it is in motion. Any other forces acting on the balloon, such as skin friction drag,
aerodynamic lift and small scale turbulence are assumed to be small in comparison.
The left hand side of the equation is then the net force acting on the balloon.

Equation (1) can be simplified to

0%¢, 2 ¢,
32 4 < _ _b !
2 - @56, + 3gR A T w

N ow'
ot

!

o¢, B

=7 @

where R is a wave-induced relative density perturbation and A is a constant dependent
on balloon parameters (Nastrom, 1980). The natural buoyancy oscillation (NBO) fre-
quency @g is the frequency with which a constant-volume balloon will oscillate about
its EDS, and is given by

2_2g(6T+i)

®° = — | —
B 3T \oz R,

(3)
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with temperature T, vertical temperature gradient T /8z and atmospheric gas constant
R,. A balloon of radius r and drag coefficient C4 gives A as

C
A= 2d

-2 (4)

The first two terms of Eq. (2) originate from the buoyancy term and the third and
fourth terms come from the drag and dynamic terms, respectively. This simplification
assumes that the balloon is always near to its EDS, so that M, ~ My at all times. It is
also assumed that the balloon is perfectly spherical and that the Boussinesq approxi-
mation holds. See Nastrom (1980) for further details.

If the EDS is disturbed by a GW of intrinsic frequency @ and vertical velocity am-
plitude w,, so that the instantaneous vertical velocity is w' = Woe" ‘Q’t, then the wave-
induced fractional density perturbation is given by the polarization relation (e.g., Hines,
1960) as

- (5)
p 9@

where p is the ambient density, N is the Brunt—Vaiséla frequency, defined as

Ne=€(£+0T) (6)

TCPE

and ¢, is specific heat capacity.

For typical values of stratospheric vertical temperature gradients (|d7/dz|<
10 Kkm'1) ®g is always greater than N. Hence the natural buoyancy oscillations are
always higher in frequency than the highest frequency gravity waves.
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3 Models
3.1 Numerical model

For a GW of given intrinsic frequency and amplitude, Eq. (2) can be solved numerically
to derive ¢{; as a function of time. As an example, consider a case study where the
balloon parameters are typical of a 12m diameter SPB used during the Concordiasi
campaign. It is assumed that the atmospheric conditions used are similar to those
experienced in Antarctic lower stratosphere in early spring. Table 2 gives the basic
atmospheric and balloon parameters. For the purposes of illustration a gravity wave
was used with a vertical wind perturbation amplitude of w, = 1m s~ ' and intrinsic period
7 = 15min or angular frequency of @ = 6.98 x 1073 rad s™". This produces a fractional
density perturbation of 5.85 x 107°.

Figure 1 shows the result of numerically solving Eq. (2) using a fourth order Runge—
Kutta method. The red line represents the vertical position of the balloon plotted against
time. The blue line represents the balloon displacement derived using an analytic
method described below.

While the numerical solution is almost sinusoidal it is apparent that higher frequency
components are also present. The power spectral analysis shown in Fig. 1 illustrates
the absence of even harmonics and the dominance of the first harmonic over the other
odd harmonics. The third harmonic is approximately ten percent in magnitude of the
first harmonic and the fifth harmonic less than five percent. Higher harmonics are less
than one percent of the first harmonic. This result supports the analysis of Nastrom
(1980) that shows that only odd harmonics are present in the vertical displacement,
with the first harmonic being dominant.

The harmonic content shown in Fig. 1 is typical of the response to short period
waves. However, the amplitude of the harmonics decreases as the wave period in-
creases. At a period of 30 min for example, the third harmonic has an amplitude of less
than 3 % of the fundamental.
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3.2 Analytic model

Figure 1 suggests that a linear relationship is a reasonable approximation to the bal-
loon’s response to a gravity wave. Hence we now consider the balloon and its environ-
ment as a quasi-linear system, treating the gravity wave as the input and the balloon
response as the output signal of this system. Using linear system theory there will exist
a transfer function (complex frequency response) relating the output to the input. The
function is of the form:

b
? =
where|Z| and ¢ are, respectively, the absolute value and phase of the transfer function,
Z, and g‘t', is the vertical variation of the balloon about its EDS due to the gravity wave.
Here the phase, ¢, is relative to the time of maximum wave displacement. ;
Now consider a sinusoidal GW for which the complex amplitude is ¢’ = g“oe"‘“’t,

where ¢, is the wave vertical displacement amplitude. The vertical wind and density
perturbation in terms of ¢’ are, respectively,

Z=|Z|e'? 7

’ ag, . A —i®@ PA o)
w'= == —i®¢.e"® = i@, (8)
N2
R=—C. 9
g ¢ 9)

Substituting Eqgs. (8) and (9) into Eq. (2) and evaluating the derivatives of g,‘t') and ¢’
gives

~D or ’ 2 ’ Y Y Y Y Y Y AD or
-7 = —@3() + §N2§ —A(=i@¢ +idl') |-idg, + i@l | - @7 (10)
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From Eq. (7) and substituting for Q') while retaining only the first harmonic in the non-
linear drag term leads to

5 IN? - &% - iAG°L,Y (1
T @2 - @2 - iAGPL,Y

where Y = |1-2Z].

A value for Z can be calculated iteratively using an initial value of Y =1. |Z]| con-
verges to a fractional difference of less than 10™* within 2 or 3 iterations for ° « a)g
(i.e. periods greater than about 10 min) and within 6 steps for ® ~ @g. Hence, the SPB
response to any gravity wave can be obtained using relationship Eq. (7), as illustrated
in Fig. 1 where the blue line is the analytic solution. It is apparent that the analytic so-
lution slightly overestimates the numerical solution, but the difference is no more than
a few meters.

4 Analysis

Further insights into the response of large diameter SPB to wave-induced motions are
gained by considering both the numerical and analytic approaches. Here we use the
same balloon parameters and atmospheric conditions given in Sect. 3 and derive the
response as a function of a number of gravity wave parameters.

Firstly, the value of w, was varied over a range from 0.1 to 2.0 ms~ for the three dif-
ferent GW intrinsic periods of 7 = 15, 30 and 60 min, respectively. Figure 2 shows the
amplitude ratio, |Z|, and phase computed using both the numerical and analytic meth-
ods. For all three periods it is apparent that the two methods give amplitude ratios that
do not differ by more than 5% and phases that differ by no more than a few degrees.

Similar results are displayed in Fig. 3. Here the amplitude and phase response de-
rived from the numerical and analytic methods are plotted as a function of wave period
for values of w, that were fixed at values 0.5, 1.0 and 1.5 ms™'. The amplitude and
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phase start to vary markedly as the wave period approaches the buoyancy period of
about 5 min. Nevertheless, the relative amplitudes derived by the two methods agree
well. Similarly, the phases agree to within at least 5°.

The analytic model also works for wave packets. Figure 4 shows the numerical and
analytic solutions for a wave packet of a wave with frequency @ and a Gaussian enve-
lope defined as

¢ = ¢e~ 1?5 cos(6t). (12)

Here, the wave period is 7 = 15 min and the “width” parameter ty= 7, so the packet has
about 5 oscillations. Again, the numerical response shows some influence of the odd
harmonics, as demonstrated in the lower panel of Fig. 4, but otherwise there is good
agreement beween both solutions.

One benefit of the analytic approach is that it gives insight into the SPB response as
a function of wave frequency. For example, from Eq. (11) it is apparent that for ®° < N?
that |Z|] — 2N2/3@§ = |Z|eps- This limiting value, when the balloon is on its EDS, has
a numerical value of |Z|gpg ~ 0.25 with the temperature gradient used here. Similarly,
the phase limitis ¢ — 0. These are the limiting values evident in Figs. 2 and 3 and they
correspond to the behavior of a perfect isopycnic balloon.

By manipulating Eq. (11) it is straightforward to show that

tang = (%Nz ~ Op)AG Y : (13)
(32 - @2) (@3 - 92) + (AD%¢,Y)?

3

Since 2/3N2 < a)é the numerator in Eq. (13) is negative. The denominator is always
positive, which means that ¢ is always negative and the balloon displacement lags the
wave displacement. These results show that a SPB starts to depart substantially from
its EDS for wave periods less than about 10 min (i.e. for @ 2 N/2).
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Two approximations give further insight into balloon behavior. First, in the low fre-
quency limit when &® < N?

(BN? - @2)Ad°¢E,Y
tang —» =——— (14)
Nza

which shows that the phase is proportional to @ng = @Ww,, all other parameters remain-
ing constant. Hence the phase departures become greater for larger wave amplitudes
and shorter periods, as seen in Fig. 2.

Second, when @ ~ N, then

2N? — @2
tang ~ u (15)
AD2LY

so now the phase departure is greater for smaller amplitude waves, as observed in
Fig. 3.

Equations (14) and (15) also show thattang cc Aocr™ when ®° < N? and tan g «
A~" & r when @ ~ N. So at lower frequencies the phase shifts will be greater for smaller
balloons for a given wave amplitude, while the opposite is true when the wave fre-
quency is near N. Finally, without going into details, it is straightforward to show that
for @ ~ N that |Z] o r.

The findings discussed above have ramifications for SPB measurements of gravity
waves and the retrieval of important wave parameters, such as momentum flux. This
issue is discussed further in the next section.

1

5 Simulations and retrieval of gravity wave parameters

Boccara et al. (2008) described a methodology by which SPB observations made dur-
ing the Vorcore campaign could be analysed to obtain gravity wave characteristics. To
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15

test the methodology a series of Monte Carlo-type simulations were made that mim-
icked the SPB observations of GW-induced perturbations in pressure and horizontal
balloon displacement. It was assumed that waves occurred in packets and a wavelet
analysis technique was used to detect the packets in space and time and so to estimate
the wave parameters.

In the Boccara et al. (2008) simulations, waves were allowed to propagate in ran-
dom directions in the horizontal, but it was assumed that all waves propagated energy
and momentum upward. Using the associated errors in the measured meteorological
parameters and by repeating the simulations many times they were able to estimate
the uncertainties and biases in the retrieved GW parameters, such as momentum flux.
Briefly, it was found that, the horizontal direction of wave propagation was accurately
retrieved but that momentum fluxes were somewhat underestimated.

Here we make use of the techniques described in Sect. 3 above to accurately model
the SPB displacements and repeat the Boccara et al. (2008) simulations, but with the
measurement parameters and uncertainties appropriate to the Concordiasi campaign
SPB observations. There were important differences between the Vorcore and Concor-
diasi observations which make the later measurements of wave fluxes more accurate,
viz.:

— Observations were made at 30 s intervals in Concordiasi, but only at 15 min inter-
vals in Vorcore. Hence, in Concordiasi the full spectrum of GW motions from the
between the Brunt—Vaisala (~ 5min) and inertial (~ 13 h) periods could be stud-
ied, whereas in Vorcore the measurements were restricted to periods greater than
1 h (Hertzog et al., 2008).

— More sensitive GPS measurements were available on the SPB during Concor-
diasi than in Vorcore, with Table 3 summarizing the instrumental uncertainties.
Most importantly, it was possible to measure directly the vertical displacement of
the balloons with an accuracy improved by a factor of 10 compared to the previ-
ous campaign. Having direct measurements of vertical displacement means that
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momentum fluxes can be derived without using the indirect and less accurate
method used in Boccara et al. (2008), as discussed below.

5.1 Simulations

To test our retrievals of gravity wave parameters a large number of simulated SPB ob-
servations was made and then analysed and the results compared with the original
input parameters. Each simulation produced a notional 10 day time series with a basic
30 s time sample period. The balloons were assumed to drift eastward with a constant
zonal wind speed of 10ms™" at a latitude of 60°S, so that, without any wave per-
turbations, there was a steady change with time in the zonal position, but not in the
meridional. _

Time series were of the SPB observables: pressure (E+p'T), temperature (T + T{),
zonal and meridional position (x +x',y') and vertical balloon displacement ({,) were
then synthesised. Here, an overbar indicates the ambient value while the primed value
indicates the wave-induced perturbation. It should be noted that the pressure and tem-
perature perturbations are a combination of the relevant wave perturbation and of the
pressure and temperature changes due to the vertical displacement of the balloon in
the presence of background gradients i.e.

! d li

pr=p + d—ng (16)
! ! dT !

TT = T + d—ng (17)

Wave packets for a general wave parameter ' were derived with the form
_E .
W/ = Re we 214 e/(kx+/y+mz—c«oz‘) (18)

10809

AMTD
6, 10797-10832, 2013

Super pressure
balloon response to
gravity waves

R. A. Vincent and
A. Hertzog

L

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10797/2013/amtd-6-10797-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10797/2013/amtd-6-10797-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

where Re means the real part, y is the complex wave perturbation amplitude derived

from the gravity wave polarizatiEn relationships, /,k and m are the zonal, meridional
and vertical wavenumber, respectively. The basic methodology for each simulation is:

1.
2.

First, choose @ from a uniform random distribution in the range f < @ < N.

Then choose the intrinsic phase speed, ¢, and direction of propagation, 6 (an-
ticlockwise from east) from uniform random distributions in the ranges 0 < ¢ <
100ms™~' and 0 < 6 < 360°. The zonal and meridional wavenumbers are then de-
rived from k = k,,cos@ and / = k,,sin@, where k, = ®/C.

The vertical wavenumber is derived from the dispersion equation

2 _ M2
| = w\’ O e (19)

@2—f2 " 4H2

where H is the density scale height. In contrast to Boccara et al. (2008), the sign of
m is set randomly, so that —|m| (+|m|) means a wave with an upward (downward)
group velocity.

The complex wave amplitudes are then computed. In order to make the simu-
lations as realistic as possible, the horizontal perturbation velocity aligned along
the direction of propagation, u|'|, was first derived at the appropriate @ based on
the mean horizontal wind spectrum derived from the actual SPB observations.
Other wave parameters, u',0",w’,p’,T" are then derived from the GW polarization
relations (Fritts and Alexander, 2003, 2012).

The vertical displacement of the SPB, g‘é, is then computed from the wave vertical
displacement, ¢’ = iw'/@, using either of the methods discussed in Sect. 3.

Finally, the total pressure and temperature values were computed from Eqgs. (16)
and (17) and time series of all observables computed and saved for later analysis.
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The above procedure was repeated 1000 times so that the retrievals of wave parame-
ters could be tested over the complete spectrum of wave frequencies and propagation
directions.

5.2 Retrievals

The formulae used to retrieve the wave characteristics from the balloon observations
are based on those of Boccara et al. (2008). However, their work only dealt with hy-
drostatic waves and used only pressure measurements to infer the balloon vertical
displacements. The two improvements achieved during the recent Concordiasi cam-
paign (i.e., higher sampling rate and better precision of GPS vertical positions) enable
us to relax these constraints, and extend the previous formulae. In the following de-
scription of the wave characteristics retrieval algorithm, we focus on its novel features
and only briefly mention those that have not changed, for which Boccara et al. (2008)
should be consulted.

As stated previously, the balloon observables are the 3-D position, pressure (p), and
temperature (7). At first, the zonal and meridional velocities (v and v, respectively) are
computed by centered finite differences from the horizontal positions. The density (o)
is obtained using the perfect gas law:

__P
R,T

0 (20)

A flight-mean density (o) and pressure (p) are computed, and the total pressure per-
turbation is obtained from the latter as p'T = p — p. Similarly, the perturbations in zonal
and meridional velocities (¢’ and v, respectively) are obtained as departures from the
flight mean values. The Eulerian pressure perturbation (p’) is then estimated from the
total pressure perturbation:

p' =P+ 098, (21)
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which is the reciprocal of Eq. (16) assuming hydrostatic equilibrium for the background
atmosphere. Note here that the balloon vertical displacement (Q;) is simply the depar-
ture from the flight-mean altitude. In particular, no assumption is made at this stage
about the balloon flying at constant density.

A complex Morlet wavelet transform (Torrence and Compo, 1998) is then applied to
all timeseries (v, v/, ¢, pT, p'). From now on, all the equations in this section refer
to the complex amplitudes of the wavelet coefficients, which are denoted with a tilde
over the perturbations (e.g. &). These coefficients correspond to the decomposition
of the wave signals in small A@ — At blocks in the intrinsic frequency/time domain.
The wavelet set of frequencies are chosen to match the range of gravity-wave intrinsic
frequencies (i.e., from f to N).

As in Boccara et al. (2008), 6 is determined as the angle for which the modulus of the
horizontal wind perturbation projected on that direction is maximized. 6 is thus found
with a 180° ambiguity, which is resolved later on.

The intrinsic phase speed in the wave direction of propagation is readily inferred from
the polarization relation (e.g., Fritts and Alexander, 2012):

where 6_ =1 - f2/c6>2. Hence, ¢ is estimated as:
1 Re(pd;)
LI i (23)

06_ aﬁ

where the Ul*l denotes the complex conjugate of .

To compute the wave momentum flux, we assume that the balloon vertical displace-
ment is that of a perfect isopycnic tracer. As previously discussed, this will be a source
of error when the balloon departs from this ideal behavior, i.e. when @ — N. Yet this as-
sumption enables us to relate the balloon vertical displacements to those of air parcels.
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In particular, the Lagrangian component of the pressure disturbance (g—fg‘é) can then
be related to the Eulerian value:

dp. | 1 @° 3
d_ZCb = (ImH - §> <1 + m) p (24)

Note that H is the density scale height. This equation is obtained in the same manner
and is equivalent to Eq. (9) in Boccara et al. (2008), but includes in the second bracket
an additional term associated with non-hydrostatic waves. Similarly, we use the full
non-hydrostatic polarization relation between the horizontal and vertical velocity distur-
bances:

N 2 .
I/T/=—<@ —f >m+//2H[I|| (25)

N2 — ¢2 ki

which, with the help of Eq. (24), enables us to relate the wave momentum flux from the
balloon observables:
N2
Im(ﬁTL7|*|) = —pH > Re(&ﬁ W) (26)
where Im(z) stands for the imaginary part of z. Equation (26) turns out to be the same
equation as the hydrostatic version of Boccara et al. (2008). We require here that the
momentum flux be positive, which resolves the 180° ambiguity in 8, i.e. a sign switch
of dy.
[
The vertical wavenumber of the wave packets can be inferred from a combination of
Egs. (22) and (25):

2 _ 2\ Re(d;w)
m=—-p266. (N @‘“’ ) ! (27)

52
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At this stage, m < 0, i.e. the wave is assumed to propagate upward in the atmosphere.
The sign of m is now determined as follows. First, expressing pt as a function of w
with the help of Egs. (22), (24) and (25), one obtains:

2 2
Re(#p:) = - <m2+f1"/4H2> <N @@ > 2 (28)

The sign of Re(wpy) is thus the opposite to that of m. Because (| = HR for a perfect
isopycnic balloon one obtains with the help of Eq. (5):

Re(#;) = Re (—/% fbﬁ;) . (29)

Hence, the sign of m can be inferred from the balloon observables. If m > 0, 8 is rotated
by 180°, and the sign of F%e(L7|‘| w) is reversed.

The horizontal wavenumber k,, is then derived from Eq. (19), the gravity wave dis-
persion relation. Finally, the ground-based angular frequency (®) is obtained from the
Doppler-shift equation:

®=® + Uk, cosO + V k,sin@ (30)
5.3 Results

Instrumental and wave propagation factors always impose limits on the extraction of
GW parameters from observations (Alexander, 1998; Alexander and Barnet, 2007;
Alexander et al., 2010). In principle, there are no limits on the range of GW frequen-
cies or wavelengths that can be determined using SPBs of the type described here.
However, there are likely to be difficulties in determining momentum fluxes for short
period waves where a balloon departs from its EDS. Furthermore, the uncertainties
that are inherent in the instruments carried on the SPB will set a noise floor, below
which fluxes cannot be reliably determined. Similarly, the wavelet analysis itself will
10814
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start to breakdown when packet amplitudes fall below some critical value. The proce-
dures described above allow the limitations of the SPB momentum flux measurements
and the uncertainties of other wave parameter to be explored.

In order to test the various factors that influence the accuracy of the SPB flux mea-
surements a series of preliminary investigations were conducted. Outcomes of trials
that do not contain instrumental noise indicate the influence of the wavelet analysis
technique and of the retrieval algorithm. Repeating the analysis of the same dataset,
but with noise now included, then shows the effects of instrumental noise. Results for
one such comparison are illustrated in Fig. 5. Here a wavepacket of the form

—t2 /242

u =uye cos(@t) (31)

l
was used, where 7 = 2m/®. Other wave parameters were derived via the GW polariza-
tion relations as the packet amplitude, u,, was changed systematically from 0.001 to
10ms™". In this example values of 7 =60min, ¢ =40 ms~' and 6 = 300° were used,
but the conclusions are quite general.

Figure 5a shows that v'w’ is determined well for values of u, > 0.05 ms™~" for trials
both with and without noise. In the case of ¢ and of 8 the same situation applies for
the no noise case, but the effects of instrumental noise become apparent for values
of u, 0.2 ms™'. Similar outcomes were found for other wave parameters, such as
wavelength, which indicates that all wave parameters can be successfully retrieved if
the velocity amplitudes are above a threshold of u, ~ 0.2 ms™", although v'w’ can be
reliably determined to lower values.

This threshold was then applied to the full analysis. In the results discussed below
1000 simulations were used. Deriving and then retrieving data from this number of
simulations is quite time consuming, so the analytic method was used to determine g‘t'),
since the results are similar to the more time consuming numerical technique. Figures 6
and 7 show plots of retrievals of GW parameters from datasets that either include
instrumental noise (lower panels) or no noise (upper panels). Results color coded in
red and blue denote waves with m < 0 and m > 0, respectively.

10815

AMTD
6, 10797-10832, 2013

Super pressure
balloon response to
gravity waves

R. A. Vincent and
A. Hertzog

L

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10797/2013/amtd-6-10797-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10797/2013/amtd-6-10797-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

Simulations of momentum flux show very good comparisons between the input and
output values at all periods greater than ~ 10-20 min (Fig. 6a and d). The effects of in-
strumental noise are minimal. However, it is clear that there are systematic differences
between the input and retrieved values at short periods. To understand why, consider
Eq. (26), which can be expressed using Eq. (15) from Boccara et al. (2008), as

Re(d’ i) = - \9/A+01/02) | s i), (32)

: P9 (g/c,+0T/02) |

which in turn can be expressed as

2
1 3@y

Re(u|| W) = —@Wlm(pTu”)
1 5
= —_—lm(pTU”)
P9|Zeps

(33)

where |Z|gpg Was defined in Sect. 4. So the systematic deviations in retrieved flux at
short periods mark the departure of the balloon off its EDS.

The retrievals of phase speed and direction are also excellent, especially in the non-
noisy situations (Fig. 6b and c), but they show some systematic differences when wave
frequencies are near f and N, especially when instrumental noise is included (Fig. 6e
and f). For 8, when @ ~ f the wind perturbation hodograph is almost circular, which
makes the precise determination of direction of propagation more difficult. This ac-
counts for the small spread in values of 8 near . While the changes in 8 are small (no
more than a few degrees), the variations in ¢ are proportionately larger at both ends of
the spectrum. Figure 7 shows that similar systematic deviations from input values are
evident at short and long periods in other important wave parameters.

There are a number of reasons why the retrieved values may show a bias at both
short and inertial periods. Firstly, the retrieval analysis assumes that the SBP is moving
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on an isopychic surface, but the SPB departs significantly from its EDS at short periods,
as illustrated in Fig. 3. In particular, it is the phase variations in Z that vary most rapidly
with frequency for N > @ > N/2, and produce the systematic bias.

A second, more subtle, effect is caused by the use of wave packets in the simula-
tions. Packets described by Eq. (31) have a width in frequency space of A@ ~ @. When
either @ ~ N or @ ~ f the wave packets will project onto some wavelet coefficients as-
sociated with frequencies greater than N or less than f. Furthermore, in this situation
factors such as (N2 - @“)2), (c«“Jz - f2) or 6_, which appear in almost all expressions used
to retrieve the wave parameters, reverse sign thereby accentuating the effect. Nev-
ertheless, these “non-gravity wave” coefficients are retained in the retrieval process
provided that the central frequency of the wave packet is located between N and f. If
they are discarded then a significant fraction of the wave momentum flux is lost.

Another factor in the degradation of performance near N is the effect of instrumental
noise (e.g. Fig. 6e) acting in concert with the change in wave amplitude with frequency
in the simulations. As noted in (iv) above, the starting value of uy was derived from

the observed spectrum of horizontal kinetic energy, which scales as ~ &2 Hence,
Uy, is smaller at higher frequencies, shorter periods. Furthermore, the KE spectrum
itself was derived from the average over all flights, which means that wave amplitudes
for specific wave packets at a given frequency are probably underestimated, and are
therefore more likely to be noisier than they would be in practice. A simple test in which
the wave amplitudes input into the retrieval process were increased by a factor of 3
confirmed the latter hypothesis. It showed that the random variations at short periods
evident in, say, Fig. 6e had almost disappeared.

Finally, it is stressed that the important momentum flux parameter is the one least in-
fluenced by noise. This supports the simulations shown in Fig. 5a, where values of v'w’
are recovered well down to small values of v,. Momentum flux and wave propagation
direction are also the two parameters that do not contain frequency dependent terms
such as 6_, which explains the retrieval of these parameters over a wider frequency
range.
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Table 4 summarizes the statistics of the retrievals of important wave parameters.
Except for the intrinsic and ground-based period ratios, the results for the whole wave
spectrum and the more restricted frequency range N/2 2 @ 2 1.5f are included. For
the reasons discussed above, it is the latter frequency range that provides the more
realistic results. For the wave periods the median values of the retrieved to input values
are included as well as the mean values. For the intrinsic period the median and means
are identical and show that the recovered values slightly underestimate the true values.
The mean values of the ground-based periods are biased by some outliers, and the
median values give a more accurate indiction of the accuracy of the retrieved values.
Overall, the wave parameters are well recovered.

6 Conclusions

Super pressure balloons provide the only direct way to measure momentum fluxes
and other important wave parameters in terms of intrinsic frequency and phase speed.
Building on the work of Nastrom (1980) and others we analyze the response of an SPB
to vertical displacements induced by gravity waves. Using the known uncertainties of
the various instruments carried on the latest versions of SPB developed by CNES we
estimate the accuracy to which fluxes and other important wave parameters can be
measured as a function of wave amplitude. The analysis is particularly focussed on
SPB operating in the stratosphere.

Both numerical and quasi-analytic techniques are used, with the analytic technique
giving particular insight into the SPB response as a function of wave frequency. It is
shown that the response is well behaved for intrinsic wave frequencies lower than about
N/2. At low frequencies the ratio of the balloon vertical displacement to the wave dis-
placement has a limiting value determined solely by atmospheric temperature and its
gradient. Numerically the value is about 0.25 for conditions in the Antarctic springtime
stratosphere. At frequencies higher than ~ N/2 the balloon starts to depart significantly
from its isopycnic surface or EDS.
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Following Boccara et al. (2008) a statistical analysis of the simulated response of
12m diameter SPB to gravity wave packets propagating in the Antarctic stratosphere
is used to show that momentum flux is measured with high accuracy for @ S N/2, as is
the direction of wave propagation. Momentum fluxes can be accurately measured down
to values of about 10™*mPa (Fig. 5a). As newer instruments are installed, including
more accurate GPS measurements of displacement, reductions in this noise floor are
possible. Other wave parameters such as intrinsic phase speed and horizontal and
vertical wavelengths are also recovered with good accuracy, although the optimum
frequency range is N/2 2 @ 2 1.5f due to factors that complicate the retrieval process
when @ ~ f.

An important outcome is that the retrieval process is independent of the vertical
direction of wave propagation propagation. This means that it will be possible to derive
the net momentum flux when the analysis is applied to real data, such as that acquired
during the 2010 Concordiasi campaign.
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Table 1. Definition of terms used in the text.

Symbol

Definition

Mass of balloon system

Mass of the air displaced by the balloon system

Added mass coefficient (1/2 for a sphere in a perfect fluid)
Vertical displacement the balloon from its EDS

Density of ambient atmosphere

Drag coefficient

Cross-sectional area of balloon

Vertical wind velocity.
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Table 2. Atmospheric and balloon parameters in the Antarctic lower stratosphere.

Parameter Value

T 200K
d7/dz  -1.60x107*Km™
N? 4x107*s72
a)g 9.7x107*s2
] 0.105kgm™
I 6000 Pa
Cy 0.5
r 6.0m
A 0.0208 m™"
10823

| J1adeq uoissnosiq | Jaded uoissnosiq

Jaded uoissnosiq | Jaded uoissnosiq

(®
{o

AMTD
6, 10797-10832, 2013

Super pressure
balloon response to
gravity waves

R. A. Vincent and
A. Hertzog

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10797/2013/amtd-6-10797-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10797/2013/amtd-6-10797-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

AMTD
6, 10797-10832, 2013

Jaded uoissnosiq

Super pressure
balloon response to
gravity waves

O
(2} .
0 R. A. Vincent and
- & A. Hertzog
Table 3. SPB measurement uncertainties. o :
-}
Parameter Symbol  Uncertainty o
©
. (0] Title Page
Zonal displacement Oy 0.75m = J ‘
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Meridional velocity o, 0.025ms™" S Tab) -
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Table 4. Mean values of simulated parameters and their standard deviations. Here, A¢, AG,
A(p,u'w') and Ac are the differences between the respective simulated and input values. The
other quantities are the ratios of the simulated to input values. The 7 ratio denotes the ratio of
the retrieved intrinsic wave period to the input value and the 7, ratio is the ratio of the retrieved to
input ground-based period. Figures in brackets are median values. The statistics are provided
for the full GW frequency range (N > @ > f), unless otherwise stated, and both up and down
going waves are included in the averages.

Parameter Without Noise With Noise

Mean Std. Dev. Mean Std. Dev.
Aé (ms™) -3.6 11.1 -3.7 12.2
Aé (ms™') (N/2 > & > 1.5f) -0.22 0.35 0.01 2.1
A6 (deg) -0.73 13.8 -2.8 22.4
A6 (deg) (N/2 > & > 1.5f) 0.00 0.2 -0.82 12.1
A(pouyw') (mPa) 6x107* 5x107° 2x107* 7x107°
A(pouyw') (mPa) (N/2 > & > 1.5) -5x107° 1x107%  —1x10™* 4x107°
Acg (ms™) -3.8 11.3 -4.0 12.2
Acg (ms™") (N/2 > & > 1.5f) -0.43 15 -0.12 25
A, ratio 2.2 40 1.1 3.6
A, ratio (N/2 > & > 1.5f) 0.97 0.11 1.1 2.0
A, ratio 2.8 45 3.3 96
A, ratio (N/2 > & > 1.5f) 1.05 0.12 1.07 12.3
7 ratio 0.93 (0.93) 0.04 0.93 (0.93) 0.09
1,4 ratio 1.48 (0.93) 15 1.44 (0.93) 10
% of momentum flux in right direction 98 97
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Fig. 1. (Top) Vertical displacements of a 12m diameter superpressure balloon induced by
a gravity wave with period 15min and vertical wind amplitude of 1ms™'. Results are plotted
for the interval 1 to 3 h after the simulation was turned on to avoid transient effects near ¢ = 0.
The red curve shows the numerical simulation while the blue curve shows results from the an-
alytic method. (Bottom) Normalized power spectrum of the numerically simulated SPB vertical
displacements shown in top panel.
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Fig. 2. Comparison of the analytical solution (dashed) with the numerical solution (solid) for
the response of a 12m diameter SPB to gravity waves with different values of vertical velocity
amplitude and periods of 15min (blue), 30 min (red) and 60 min (black). The top panel shows
the balloon displacement normalized to wave displacement (¢, /¢,) and the bottom panel the
relative phase, ¢.
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Fig. 5. (a) Values of momentum flux in mPa plotted as a function of wave packet amplitude,
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instrumental noise and the blue triangles show the retrieved values with noise. (b) As for (a),
but for Ac = &, — &, (€) As for (a), but for A8 = 8, — i
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